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Epidemiologic studies indicate that children exposed to
early adverse experiences are at increased risk for the
development of depression, anxiety disorders, or both.
Persistent sensitization of central nervous system (CNS)
circuits as a consequence of early life stress, which are
integrally involved in the regulation of stress and emotion,
may represent the underlying biological substrate of an
increased vulnerability to subsequent stress as well as to
the development of depression and anxiety. A number of
preclinical studies suggest that early life stress induces
long-lived hyper(re)activity of corticotropin-releasing fac-
tor (CRF) systems as well as alterations in other neuro-
transmitter systems, resulting in increased stress respon-
siveness. Many of the findings from these preclinical
studies are comparable to findings in adult patients with
mood and anxiety disorders. Emerging evidence from
clinical studies suggests that exposure to early life stress is
associated with neurobiological changes in children and
adults, which may underlie the increased risk of psycho-
pathology. Current research is focused on strategies to
prevent or reverse the detrimental effects of early life
stress on the CNS. The identification of the neurobiolog-
ical substrates of early adverse experience is of para-
mount importance for the development of novel treatments
for children, adolescents, and adults.Biol Psychiatry
2001;49:1023–1039 ©2001 Society of Biological
Psychiatry
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Introduction

The past decades have witnessed an increasing societal
awareness of the presence and high incidence of child

maltreatment, which has now been pronounced a public
health problem of epidemic dimensions (Margolin and

Gordis 2000). According to the National Center of Child
Abuse and Neglect, approximately 1.5 million verified
cases of child maltreatment are reported annually in the
United States; more than half of these cases represent
instances of neglect, and about 700,000 cases are incidents
of sexual, physical, or emotional abuse (Sedlack and
Broadhurst 1996). In addition to child maltreatment, large
numbers of children experience the loss of a parent (Agid
et al 2000) or live with a mentally ill parent likely unable
of providing continuous parental care (Goodman and
Gotlib 1999). In view of estimates that 5% to 16% of
women are sexually or physically abused during preg-
nancy (Cokkinides et al 1999; Goodwin et al 2000; Hedin
and Janson 2000; McFarlane et al 1996), it can also be
assumed that a significant number of children are exposed
to prenatal stress.

Compelling evidence from a variety of studies suggests
that early life stress constitutes a major risk factor for the
development and persistence of mental disorders. In-
creased rates of major depression, posttraumatic stress
disorder (PTSD), attention-deficit/hyperactivity disorder,
and other behavioral disorders have been reported for
maltreated children (e.g., Famularo et al 1992; Pelcovitz et
al 1994). Representative of many other studies, a commu-
nity-based study of almost 2000 adult women revealed
that those with a history of childhood sexual or physical
abuse, but not adulthood rape or physical assault, exhib-
ited more symptoms of depression and anxiety and had
more frequently attempted suicide than women without a
history of childhood abuse (McCauley et al 1997). Syn-
dromal major depression and anxiety disorders, including
panic disorder and PTSD, are frequent in adults with a
history of childhood abuse (e.g., Felitti et al 1998; Mullen
et al 1996; Saunders et al 1992; Stein et al 1996). Similar
findings have been reported for other instances of early
life stress. For example, early parental loss has been found
to be related to unipolar and bipolar depression, as well as
anxiety disorders, beyond familial or genetic factors (Agid
et al 1999; Kendler et al 1992, 1993). Moreover, prenatal
stress has been related to an increased risk for major
depression in adulthood (Hulshoff et al 2000). Early life
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stress has also been associated with increased risk for
other disorders, including schizophrenia and substance
abuse (Agid et al 1999; Felitti et al 1998; Kendler et al
2000) as well as diabetes, heart disease, and immune
disorders (Felitti et al 1998; Francis et al 1999; Wallace
1987). The manifestation or worsening of these psychiatric
and classical medical disorders in adulthood is often
related to acute life events or ongoing stress (Hammen et
al 1992; Mooy et al 2000; Norman and Malla 1994; Twisk
et al 1999). Thus, it may be suggested that adverse
experience during development may induce a vulnerability
to the effects of stress later in life, predisposing these
individuals to develop a wide array mental and physical
disorders that are known to manifest or worsen in relation
to acute or chronic life stress.

Vulnerability to stress and disease is surely not the
exclusive consequence of an adverse early environment,
but is well documented to be influenced by genetic factors
(see Francis et al 1999). Thus, the concatenation of
genetics, early life stress, and ongoing stress may ulti-
mately determine individual stress responsiveness and the
manifestation of psychiatric disorders. Thus, an epidemi-
ologic twin study indicated that the manifestation of major
depression occurs as a function of genetic disposition,
early trauma, and recent life stress (Kendler et al 1993).
Early adverse experiences may “shape” a preexisting
genetic vulnerability to stress and disease, resulting in a
stable phenotype, with a certain risk to develop one or
another syndrome in response to further stress exposure
(see Figure 1). By what means can early adverse experi-
ences shape a vulnerable phenotype? It is likely that early
adverse experiences induce a persistent sensitization of
stress-responsive neural circuits. There are a number of

excellent recent reviews on the neurobiological conse-
quences of early developmental stress in animals (Francis
et al 1999; Kaufman et al 2000; Ladd et al 2000). This
review seeks to provide an update of preclinical findings
and summarizes available clinical data on the neurobio-
logical consequences of early life stress in children and
adults.

Neural Circuits Implicated in Stress,
Depression, and Anxiety

The relationship between early life stress and the devel-
opment of major depression and anxiety disorders, as well
as other mental and physical disorders, may be hypothe-
sized to be mediated by persistent changes in corticotrop-
in-releasing factor (CRF) neurotransmission and alter-
ations in other neurotransmitter systems implicated in the
regulation of the stress responses (e.g., Nemeroff 1999).
Because of its strategic distribution throughout the central
nervous system (CNS), the 41 amino acid peptide, CRF, is
generally acknowledged to be the major coordinator of the
behavioral, autonomic, immune, and endocrine compo-
nents of the mammalian stress response. The cell bodies in
the medial parvocellular region of the hypothalamic para-
ventricular nucleus (PVN) containing CRF form the cen-
tral component of the hypothalamic-pituitary-adrenal
(HPA) axis, which constitutes the major neuroendocrine
stress response system. Upon stress exposure, CRF is
released from the median eminence nerve terminals into
the hypothalamo-hypophysial portal circulation and trans-
ported to the anterior pituitary, where it binds to CRF
receptors on the corticotropes, thereby stimulating the
production and release of the proopiomelanocortin
(POMC)-derivatives, adrenocorticotropin (ACTH) and
b-endorphin. In turn, ACTH stimulates the synthesis and
secretion of glucocorticoids from the adrenal cortex (see
Arborelius et al 1999). Circulating glucocorticoids exert a
wide range of metabolic and immune-modulating effects
and counter-regulate the neuroendcorine stress response
by negative feedback at pituitary, hypothalamic, and
hippocampal levels. Negative feedback is mediated via
two types of adrenal steroid receptors: the high-affinity
mineralocorticoid receptors (MR) in the hippocampus and
the low-affinity glucocorticoid receptors (GR) widely
distributed throughout the brain. Although increased glu-
cocorticoid secretion is critical to the adaptation of an
organism to stress, prolonged or excessive exposure to
glucocorticoids may be deleterious because of untoward
effects on the CNS and physical organs (see McEwen
1998).

It is now well established that CRF, beyond its role as
a hypothalamic hypophysiotropic hormone, also serves as
a neurotransmitter within the CNS, mediating autonomic

Figure 1. Proposed model of the interaction between genetic
disposition and early environment leading to a vulnerable phe-
notype. Subsequent exposure to stress or trauma throughout the
life span may induce exacerbation of pathology based on the
underlying vulnerability. Social support or coping styles may
buffer the effects of early life stress on vulnerability. Modified by
Dr. P.M. Plotsky from Ladd et al (2000) with permission.
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and behavioral stress responses. Thus, when administered
directly into the CNS of laboratory animals, CRF produces
effects that are reminiscent of stress, depression, and
anxiety, including increases in peripheral catecholamine
secretion, heart rate and arterial pressure, changes in
gastrointestinal activity, decreased reproductive behavior,
decreased appetite, disruption of sleep, increased groom-
ing behavior, increased locomotor activity in a familiar
environment, suppression of exploratory behavior in a
novel environment, potentiation of acoustic startle re-
sponses, facilitation of fear conditioning, and enhance-
ment of shock-induced freezing and fighting behavior (see
Dunn and Berridge 1990; Owens and Nemeroff 1991).
There is evidence that these effects are mediated via
binding of CRF to CRF1 receptors, whereas CRF2 recep-
tors that bind with high affinity to urocortin, a related
endogenous neuropeptide, appear to be involved in damp-
ening stress and fear (see Arborelius et al 1999).

The capability of CRF to integrate the mammalian
organism’s responses to stress is founded on widespread
CRF neuronal circuitry connecting brain structures critical
to cognitive and emotional processing with autonomic
outflow centers and the hypothalamus. Thus, an abundant
presence of CRF neurons and its receptors is found in the
neocortex and the central nucleus of the amygdala, a key
brain site in the mediation of emotions (see LeDoux 2000).
The CRF neurons originating in the central nucleus of the
amygdala project directly and indirectly, via the bed
nucleus of the stria terminalis, to the hypothalamic PVN
and likely influence pituitary-adrenal responses to stress.
Thus, electrical stimulation of the central nucleus of the
amygdala results in increased neuroendocrine stress re-
sponses, whereas lesion of the same region results in
decreased responses (see Feldman and Weidenfeld 1995).
The CRF neurons of the central nucleus of the amygdala
are also directly and indirectly connected to brain-stem
nuclei, including the locus coeruleus (LC) and the raphe´
nuclei. The LC regulates autonomic outflow and is the
major source of the noradrenergic perikarya projecting to
the forebrain. The raphe´ nuclei contain the bulk of the
serotonergic projections to the forebrain. Noradrenergic
and serotonergic neurons themselves send projections to
various brain regions that contain CRF neurons or are
otherwise involved in the stress response (see Owens and
Nemeroff 1991). Consistent with these neuroanatomic
connections, on a functional level, stress results in in-
creases of CRF concentrations in the central nucleus of the
amygdala as well as the LC (Chappell et al 1986; Pich et
al 1993). Microinjection studies have shown that CRF
induces many behaviors reminiscent of fear or anxiety
through actions on specific brain regions (Butler et al
1990; Liang and Lee 1988; Weiss et al 1994). Moreover,
it has been shown that CRF increases the firing rate of

noradrenergic neurons in the LC (Valentino et al 1983),
likely resulting in sympathetic nervous system activation
and noradrenergic stimulation of CRF in the PVN. In
contrast, CRF predominantly inhibits serotonergic neurons
in the raphe´ nuclei (Kirby et al 2000; Price et al 1998),
which modulate stress responses through projections to the
PVN, amygdala, and the hippocampus. Increasing evi-
dence suggests thatg-aminobutyric acid (GABA)-contain-
ing neurons located in these brain structures exert inhibi-
tory influences on central CRF neurons and stress
responsiveness (see Kaufman et al 2000). Another impor-
tant structure involved in the regulation of emotion is the
prefrontal cortex, which is believed to control behavioral
and pituitary-adrenal responses to stress through inhibitory
GABA-ergic projections to the amygdala and the hypo-
thalamus (see Davidson et al 2000).

Taken together, there is a corpus of literature inferring
a role for CRF as a key mediator of the stress response.
Preclinical studies suggest that CRF possesses marked
depressogenic properties and is involved in the mediation
of fear and anxiety, consistent with its neuroanatomic
distribution and its mutual interactions with other neuro-
transmitter circuits involved in the regulation of emotion.

Preclinical Findings on the Neurobiological
Consequences of Early Life Stress

Given the preclinical evidence for a role of CRF in the
mediation of stress and emotion, it may be plausible that
early adversities induce persistent changes in CRF neural
circuits that are associated with the development of de-
pression or certain anxiety disorders. Preclinical studies
using rodents or nonhuman primates are indispensable to
improve our understanding of the consequences of early
life stress because experimental variation of early environ-
ment in humans is obviously precluded on ethical grounds.
Although a large number of studies have evaluated the
long-term neurobiological adaptations to perturbations of
the early environment in rodents or nonhuman primates,
few preclinical studies exist on the immediate effects of
early developmental stress on the brain.

Among animal models of early life stress in rodents is
repeated separations of rat pups from their mothers during
the neonatal period. Although there is evidence for a stress
hyporesponsive period in neonatal rats, our group ob-
served significant rises in plasma corticosterone levels
both on postnatal day (pnd) 10 and pnd 18 in rats subjected
to maternal deprivation. After 24 hours of maternal sepa-
ration, we observed a reduction of CRF concentrations in
the median eminence in 10-day-old rats and a 50%
reduction of pituitary CRF receptors in 18-day-old rats,
likely reflecting sustained release of CRF (Pihoker et al
1993). Another study reported that 12-day-old rats ex-
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posed to maternal deprivation exhibit increased ACTH
responses to restraint stress compared with rats not ex-
posed to maternal separation (Dent et al 2000). Although
a rapid increase in CRFmRNA expression in the PVN was
observed in both groups, only the maternally separated rats
exhibited increased arginine vasopressin (AVP) mRNA
expression, suggesting that increased stress responsiveness
may be associated with the synergy of releasing effects of
CRF and AVP. There is, furthermore, important evidence
that there are critical developmental “windows,” in which
early life stress may have differential effects on neurobi-
ological function. Thus, prolonged maternal separation
over 24 hours at pnd 3–4 produces increased ACTH and
normal corticosterone responses to stress at pnd 20 in rats,
whereas prolonged maternal separation at pnd 11–12
produces blunted ACTH and normal corticosterone re-
sponses to stress at pnd 20 (van Oers et al 1998; Workel et
al 1997). In a recent study, 6-month-old rhesus monkeys
who were reared without their mothers but with peers
showed increased cortisol responses to social separation
compared with mother-reared rhesus monkeys, with cor-

tisol increases predicting alcohol preference of these
monkeys in young adulthood (Fahlke et al 2000). A
magnetic resonance imaging (MRI) study found decreased
volumes of the posterior corpus callosum, but not of the
hippocampus, in prepubescent nonhuman primates reared
under social isolation from 2 to 12 months of age com-
pared with primates reared in a social environment
(Sanchez et al 1998), paralleling findings in maltreated
children (De Bellis et al 1999b, see below). Taken to-
gether, these findings suggest that intense neonatal stress
induces immediate neurobiological changes, likely result-
ing in long-term maladaptations. More developmentally
focused preclinical studies on the neurobiological impact
of early life stress are strongly needed to elucidate the
mechanisms of early-onset depression and other mental
disorders after early life stress.

As for the long-term consequences of early life stress
(see Table 1), adult rats separated from their dams for 180
min per day on pnd 2–14 demonstrate increased CRF
concentrations in the median eminence, portal blood, and
CSF, as well as increased CRF mRNA expression in the

Table 1. Findings on the Long-Term Neurobiological Consequences of Early Environmental Variation in Selected Animal Models

Model Species Timing Neurobiological Changes

Increased maternal caregiving behavior Rats Observed at pnd 1–10 ACTH after stress 2
CORT after stress 2
CRF mRNA in PVN 2
CRF receptor binding in LC 2
a2 receptor binding in LC 1
CBZ in CeA, LnA, LC 1
GR mRNA in hippocampus 1
Synaptogenesis in hippocampus 1

Maternal separation Rats 180 min/day pnd 2–14 ACTH after stress 1
CORT after stress 1
CRF in CSF, ME, LC 1
CRF receptor binding in LC 1
CRF mRNA in PVN, CeA, BNST 1
NE in PVN 1
GABAA receptor binding in CeA, BnA, FC 2
CBZ in CeA, BnA, LC, NTS 2
GR in hippocampus 2
5-HT cell firing in NR after citalopram 2

Rats 4–6 hour/day pnd 2–14 ACTH basal and after stress 1
CORT basal and after stress 3
CRF in ME 1
Pituitary CRF receptor binding in NR 2
CRF receptor binding in NR 1

Nonhuman primates Separated after birth and
peer reared

ACTH after stress 1
CORT after stress 1

Variable foraging demand Nonhuman primates 12 weeks beginning at
;17 weeks of age

CSF CRF 1
CSF CORT 2
Behavioral response to yohimbine 1
GH response to clonidine 2
Behavioral response to m-CPP 2

ACTH 5 adrenocorticotropic hormone; BNST5 bed nucleus of the stria terminalis; CBZ5 central benzodiazepine receptor; CeA5 central nucleus of the amygdala;
CORT5 corticosterone or cortisol; CRF5 corticotropin-releasing factor; CSF5 cerebrospinal fluid; FC5 frontal cortex; GABAA 5 gamma-aminobutyric acid A receptor;
GH 5 growth hormone; GR5 glucocorticoid receptor; LC5 locus coeruleus; BnA5 basolateral nucleus of the amygdala; m-CPP5 meta-chlorophenylpiperazine; ME5
median eminence; mRNA5 messenger ribonucleic acid; NR5 nucleus raphe; NTS5 nucleus tractus solitarius; pnd5 postnatal day; PVN5 paraventricular nucleus.
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hypothalamic PVN and decreased pituitary CRF receptor
binding under resting conditions compared with rats
reared under normal animal facility conditions. Rats sep-
arated from their dams for 180 min per day on pnd 2–14
also exhibited increased ACTH and corticosterone re-
sponses to a variety of stressors, including the exposure to
air-puff startle, novel environment, or restraint stress
(Ladd et al 2000; Plotsky and Meaney 1993). Adult rats
that were removed from their dams for 4–6 hours per day
on pnd 2–21 also exhibited increased ACTH but notably
normal corticosterone responses to foot-shock (Ladd et al
1996), suggesting that more severe or extended postnatal
stress may promote adrenal dysfunction, which is also
observed in other models of early life stress (Coplan et al
1996, see below).

Rats exposed to maternal separation for 180 min per day
on pnd 2–14 also develop marked behavioral abnormali-
ties, including reduced consumption of a sweetened solu-
tion reflecting anhedonia, as well as increased freezing in
an open-field, decreased exploration of a novel environ-
ment, and increased acoustic startle responses, all indica-
tive of fear (Caldji et al 2000; Ladd et al 2000). As
outlined above, the underlying substrate of these behaviors
may be increased CRF neurotransmission in corticolimbic
and brain-stem circuits. Accordingly, adult rats that were
separated from their dams in the same model demonstrate
increased CRF mRNA expression in the central nucleus of
the amygdala and in the bed nucleus of the stria terminalis.
Moreover, discordant with the well-accepted concept of
ligand-induced receptor regulation, increased CRF con-
centrations along with increased CRF receptor binding
density was measured in the LC (Plotsky et al, in press).
Consistent with the evidence that the LC-noradrenergic
neurons project to the hypothalamus, increased concentra-
tions of norepinephrine (NE) have been measured in the
PVN of the hypothalamus of maternally separated rats
(Liu et al 2000a). Norepinephrine serves as major stimulus
for CRH release in the hypothalamus, suggesting that
increased CRF transmission in pathways connecting the
amygdala with the hypothalamus and the LC may contrib-
ute to enhanced neuroendocrine stress reactivity after early
life stress.

With respect to other neurotransmitter systems, in-
creased CRF receptor binding has been measured in the
nuclei raphe´ (Ladd et al 1996). Corticotrophin releasing
factor neurotransmission in the nuclei raphe´ is associated
with predominantly decreased firing rates of serotonergic
neurons (Kirby et al 2000; Price et al 1998). Indeed, adult
rats separated from their dams for 180 min per day on pnd
2–14 exhibit decreases in serotonin (5-hydroxytryptamine
[5-HT]) cell firing in the raphe´ nuclei in response to
increasing doses of the selective 5-HT reuptake inhibitor
citalopram, suggesting persistent alterations in 5-HT trans-

porter, 5-HT1A autoreceptors, or both after maternal
separation (Arborelius et al 2000). As noted before,
serotonergic neurons originating in the raphe´ nuclei
project to various brain regions that are pivotal to the
control of the stress response, including the hippocampus
and the prefrontal cortex. Serotonergic dysfunction may
thus contribute to exaggerated neuroendocrine stress re-
sponsiveness after early life stress. In addition, it has
previously been shown that maternal separation is associ-
ated with a decrease in hippocampal GR, reflecting im-
paired feedback inhibition of the HPA axis. Changes in
hippocampal GR as a consequence of early environmental
changes have been reported to be dependent on 5-HT (see
Meaney et al 2000).

Several brain regions involved in the control or inhibi-
tion of the stress response send inhibitory GABA-ergic
projections to various other brain regions involved in the
stress response. A recent study has evaluated GABAA and
central benzodiazepine receptor (CBZ) levels in the brain
of maternally separated rats (Caldji et al 2000). Central
benzodiazepine receptors are a component of the GABAA

receptor and enhance the affinity of the GABAA receptor
for GABA resulting in increased inhibition of fear and
anxiety. For example, the anxiolytic actions of benzodiaz-
epines are mediated by binding to the CBZ. Interestingly,
it was found that maternally separated rats exhibit a
decreased density of GABAA or CBZ binding sites in
various brain regions, including the LC, several nuclei of
the amygdala, and the frontal cortex. It may thus be
assumed that dysfunction of GABA-ergic neurotransmitter
systems may contribute to enhanced stress responsiveness
after early life stress.

Opposite to the long-term consequences of prolonged
maternal separation, brief handling involving removal of
rat pups from their dams for 15 min per day on pnd 2–14
results in a phenotype, which is less sensitive to stress, less
fearful and thus better adapted compared with rats who
were left undisturbed during the postnatal period (Francis
et al 1999; Kaufman et al 2000; Plotsky and Meaney
1993). Pivotal to the understanding of the determinants
involved in the mediation of the neurobiological conse-
quences of early life stress in rodents are a series of
findings showing that separation of rat pups from their
dams results in alterations in maternal behavior. Compared
with normal animal facility conditions, removal of pups
from dams for 15 min/day has been shown to induce
increased maternal care-giving behavior, as evidenced by
increased licking, grooming, and arched-back nursing.
Several studies have assessed the neurobiological and
behavioral adaptations to naturally occurring variations in
maternal behavior, without actually removing the pups
from their dams (Caldji et al 1998; Liu et al 1997, 2000b).
Remarkably, these studies showed that increased licking,
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grooming, and arched-back nursing behavior is highly
correlated with decreased pituitary-adrenal responses to
stress, increased GR binding and enhanced synaptogenesis
in the hippocampus, decreased CRF mRNA expression in
the hypothalamus along with decreased CRF receptor and
increased presynaptica2 receptor site binding, as well as
increased CBZ receptors in the amygdala and LC. These
rats were also less fearful when behaviorally tested (Caldji
et al 1998; Liu et al 1997). The causal role of variations in
maternal caregiving behavior in shaping a phenotype more
or less vulnerable to stress has impressively been proven
in a series of cross-fostering studies demonstrating that
maternal behavior determines stress reactivity in the off-
spring and, moreover, that individual differences in ma-
ternal behavior are passed on the next generation through
nongenomic transmission (Francis et al 1999). These
findings are of paramount importance for our understand-
ing of the long-term consequences of adverse parenting
behavior in humans, such as child abuse or neglect, and its
transition across generations. Interesting in this regard are
findings suggesting that the neurobiological systems that
are modified by early experience are also involved in the
mediation of aggressive and abusive behavior (Davidson
et al 2000).

Similar to findings in rodents, adult nonhuman primates
that have been maternally deprived during infancy exhibit
increased pituitary-adrenal and behavioral responses to
acute stress, as well as signs of behavioral despair (Suomi
1991). Some studies on the long-term consequences of
early life stress in nonhuman primates have also focused
on variations in maternal behavior during infancy. In one
model, mothers of infant bonnet macaques are exposed to
different foraging demands over 12 weeks. Mothers with
constantly low foraging demand (LFD) can obtain food
without any effort, whereas mothers with constantly high
foraging demand (HFD) have to complete a daily task to
obtain their food. In a variable foraging demand (VFD)
condition, mothers are exposed to unpredictable condi-
tions with respect to food access, resulting in diminished
perception of security and a reduction of maternal care in
the infants. As adults, VFD-reared nonhuman primates
exhibit stable traits of anxiety as well as significantly
elevated CSF CRF concentrations when compared with
LFD- or HFD-reared primates (Coplan et al 1996). There
also appears to exist an opposite dysregulation of in-
creased CRF and decreased adrenal activity. Nonhuman
VFD-reared primates further exhibit exaggerated behav-
ioral responses to the administration of the selective
a2-receptor antagonist, yohimbine, and reduced growth
hormone responses to thea2 agonist, clonidine, suggesting
sensitization of the noradrenergic system as a consequence
of early life stress (Coplan et al 2000; Rosenblum et al
1994). In addition, VFD-reared nonhuman primates ex-

hibit decreased behavioral responsiveness to the 5-HT
agonist meta-chlorophenylpiperazine (m-CPP), suggesting
a dysfunctional 5-HT system after early life stress (Rosen-
blum et al 1994).

Importantly, increasing evidence from preclinical stud-
ies suggests that environmental influences may shape
stress vulnerability of the offspring even in the prenatal
period. Thus, adult rats exposed to prenatal stress show
marked increases in fear-related behaviors (Takahashi et al
1992), along with increased ACTH responses to stress and
decreased hippocampal GR levels as well as increases of
CRF content and CRF receptor binding in the amygdala
(see Cratty et al 1995; Maccari et al 1995; Ward et al
2000). Similar changes have been observed after prenatal
alcohol exposure (Ogilvie and Rivier 1997). Some of these
changes may be altered by postnatal maternal caregiving.
In view of the relative high prevalence of prenatal stress in
humans and its relationship to adult psychopathology, this
area of investigation deserves further attention.

Taken together, there is considerable evidence from
preclinical studies suggesting that an adverse early envi-
ronment is associated with marked behavioral changes
indicative of fear and anxiety, as well as with persistent
alterations in CRF neural circuits, which may contribute to
increased vulnerability for the development of depression
or certain anxiety disorders.

Comparison of Preclinical Findings on the
Neurobiological Consequences of Early Life
Stress with the Neurobiology of Mood and
Anxiety Disorders

The accumulating evidence from preclinical studies on
early life stress suggesting persistent changes in brain
regions pivotal to the mediation of stress and emotion has
raised the question of whether patients suffering from
depression or anxiety disorders exhibit similar neurobio-
logical alterations.

Although many of the long-term consequences of early
life stress in animals bear significant similarities with the
neurobiological changes observed in adult patients with
depression and some anxiety disorders, preclinical studies
on the consequences of early life stress appear to be a poor
heuristic for the neurobiology of child or adolescent
affective disorders. For example, disturbances of the HPA
axis, such as hypercortisolemia or blunted ACTH re-
sponses to CRF stimulation or other indices of HPA axis
hyperactivity, are rare in depressed children, contrasting
findings in adult major depression (Birmaher et al 1996;
Dorn et al 1996; Kaufman and Ryan 1999). It may be
argued that peripheral measures of pituitary-adrenal activ-
ity may not reflect central CRF activity at extrahypo-
thalamic sites and, moreover, that peripheral changes may
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only develop over time with chronic or repeated depres-
sion (Martin et al 2000). Differential pathophysiology of
depression at different developmental stages is further
reflected by differences in responses to pharmacologic
treatments in patients of different ages (Martin et al 2000);
however, there is evidence that CRH and serotonergic
alterations are present in depressed children with histories
of maltreatment, but not in depressed nonabused children
(Kaufman et al 1997, 1998; see next section), suggesting
that preclinical studies on early life stress represent a
heuristic specifically for understanding depression associ-
ated with early trauma. This subtype of depression may
also more frequently occur in comorbidity with anxiety
disorders. Some studies on the neurobiology of anxiety
disorders in children and adolescents have yielded find-
ings similar to some findings on the effects of early life
stress in animals. For example, elevated ACTH but normal
cortisol levels have been reported for children with gen-
eralized anxiety disorder who anticipated a laboratory
stress task (Gerra et al 2000). Altered behavioral and
hormonal responses to central noradrenergic stimulation
have been observed in children with several anxiety
disorders (Sallee et al 2000). Neurobiological alterations
are also present in children with PTSD related to early
trauma (see next section). It may be that early life stress
affects neurobiological function in children with other
anxiety disorders as well, similar to findings in early-onset
depression.

As for studies in adults, increased CSF CRF-like im-
munoreactivity has been measured in untreated patients
with depression, PTSD, and obsessive-compulsive disor-
der (OCD), but not panic disorder (see Heim and Nemer-
off 1999). Importantly, two recent studies using serial CSF
sampling techniques have provided evidence for sustained
increases in CRF activation in both major depression and
PTSD suggesting that CRF hypersecretion occurs inde-
pendent of anxiety or stress related to the lumbar puncture
(Baker et al 1999; Wong et al 2000). Concentrations of
CRF in CSF are derived from various brain regions. Thus,
these findings are consistent with findings of increased
CRF activity in corticolimbic structures of animals ex-
posed to early life stress. In addition, increased CRF and
CRF mRNA levels have been measured in hypothalamic
tissue obtained postmortem from depressed patients
(Raadsheer et al 1994, 1995). Blunted ACTH responses to
CRF injection have been reported for patients with depres-
sion, PTSD, and panic disorder, although increased re-
sponses to CRF also have been reported for panic disorder
(see Heim and Nemeroff 1999). It may be that initial
sensitization evolves into blunted responses reflecting, in
part, down-regulation of pituitary CRF receptors as a
consequence of hypothalamic CRF hypersecretion. These
findings therefore parallel the findings indicative of in-

creased hypothalamic CRF expression and release, as well
as reductions in pituitary CRF receptors in maternally
deprived rodents.

Although major depression and some anxiety disorders,
including PTSD, panic disorder, and OCD, appear rela-
tively similar with respect to central or hypothalamic CRF
hypersecretion, findings at peripheral levels of the HPA
axis are discordant. Melancholic major depression and
OCD have been associated with hypercortisolism in some
studies, whereas panic disorder (in the absence of comor-
bid depression) has been associated with normal basal
cortisol secretion (see Heim and Nemeroff 1999). In
contrast, adult patients with PTSD were shown to exhibit
decreased adrenocortical activity in a series of studies (see
Yehuda 2000), although this finding was not replicated in
several other studies in adult PTSD patients (Lemieux and
Coe 1995; Maes et al 1998). It has been suggested that
decreased cortisol secretion found in some PTSD patients
may reflect enhanced negative feedback inhibition of the
HPA axis; however alterations at the adrenal level may, in
part, contribute to altered cortisol concentrations. The
opposite dysregulation of central and peripheral compo-
nents of the stress system in PTSD parallels findings in
some animal models of early life stress.

Consistent with feed-forward actions between central
CRF and NE systems, recent evidence suggests sustained
increases in CSF NE concentrations of depressed patients
(Wong et al 2000). Pharmacologic provocation studies and
peripheral catecholamine measures also suggest increased
noradrenergic activity in several anxiety disorders, includ-
ing PTSD and panic disorder (see Coplan et al 1996). In
addition, indices of serotonergic dysfunction have been
reported for patients with depression, PTSD, OCD, and
social phobia (Hollander et al 1998; Newport and Nemer-
off 2000; Owens and Nemeroff 1994; Stein et al 1999).
Regarding GABA-ergic systems, recent functional neuro-
imaging studies revealed decreased cortical GABA con-
centrations in depressed patients, as well as decreased
prefrontal CBZ receptors in patients with PTSD or panic
disorder (Bremner et al 2000a, 2000b; Sanacora et al
1999). These findings parallel findings of noradrenergic,
serotonergic, and GABA-ergic changes in animal models
of early life stress.

Evidence from neuroimaging studies suggests morpho-
logic and functional changes in brain structures involved
in the control of the stress response in depression and
some anxiety disorders. Thus, a reduction in hippocampal
volume has been documented in several studies in adult
patients with depression or PTSD (e.g., Bremner et al
1995, 2000c; Sheline et al 1996), although reduced hip-
pocampal volume was not observed in childhood PTSD
(De Bellis et al 1999b; see below). Reduced hippocampal
volume may be a long-term consequence of overexposure
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to excitatory amino acids or glucocorticoids, potentially
leading to cell atrophy, loss, or decreased neurogenesis
(see Duman and Charney 1999). Potential mechanisms
explaining the reductions in hippocampal size in poten-
tially hypocortisolemic PTSD patients may include the
cumulative effects of excessive adrenocortical responses
to repeated stress in these patients or increased glucocor-
ticoid sensitivity of the target cells. Neuroimaging studies
have further documented alterations in the structure or
activity patterns of the prefrontal cortex, which is involved
in the inhibition of the stress response, in patients with
depression or PTSD (Drevets 1999; Mayberg et al 1999;
Newport and Nemeroff 2000; Rajkowska et al 1999).
Structural alterations of the amygdala also have been
noted in depression (Sheline et al 1998).

Although these findings provide evidence for increased
activation of the central stress response system closely
resembling findings in animal models of early life stress,
a recent study reported reducedb-endorphin and normal
cortisol responses to psychosocial laboratory stress in
depressed patients (Young et al 2000). Although the
authors argue that the blunted response may reflect in-
creased feedback inhibition at the pituitary level given
high basal cortisol levels in these patients, these findings
are in contrast to findings in animal models of early life
stress.

Does Early Life Stress Induce Similar
Neurobiological Alterations in Humans?

Given the rapidly increasing number of preclinical studies
on the consequences of early life stress and overwhelming
evidence of a close relationship between early life stress
and affective or anxiety disorders, a number of studies
have evaluated neuroendocrine, neurochemical, and
neurostructural-functional changes in children or adults
with histories of early adversities.

Studies in Children

Several studies recruiting children of different ages who
experienced different types of early life stress at different
developmental stages report decreased salivary cortisol
concentrations in the morning or a lack of decline of
cortisol toward the evening, suggesting a disturbed circa-
dian rhythm of the HPA axis (Carlson and Earls 1997;
Goenjian et al 1996; Hart et al 1996; Kaufman 1991).
Cortisol concentrations were related to symptoms of de-
pression or PTSD. The absent decline of cortisol in these
children may be due to higher numbers of stressful events
during the day or increased HPA responses to daily stress.
Thus, unlike findings in Vietnam veterans with PTSD, the

total 24-hour urinary cortisol excretion is unaltered or
increased in maltreated children, depending on the dura-
tion of the abuse and the severity of psychopathology (De
Bellis et al 1994, 1999a).

In response to a CRF stimulation test, sexually abused
girls demonstrated a markedly blunted ACTH response
compared with control subjects in one study (De Bellis et
al 1994), reflecting in part pituitary CRF receptor down-
regulation due to hypothalamic CRF hypersecretion. An-
other study using the CRF stimulation test found enhanced
ACTH and normal cortisol responses in abused children
with current depression compared to nonabused depressed
children and control subjects (Kaufman et al 1997). About
half of these children were emotionally abused at the time
of the study. In a naturalistic stress study, maltreated
children did not show an increase of cortisol in a social
conflict situation, whereas control subjects showed in-
creases (Hart et al 1995), but these results may reflect lack
of novelty to such situations in maltreated children, rather
than decreased stress sensitivity. Two studies using the
dexamethasone suppression test in children with acute
parental death (Weller et al 1990) and children who were
in an earthquake 5 years before the study (Goenjian et al
1996) yielded opposite results. Although bereaved chil-
dren were depressed and did not adequately suppress
cortisol, the children exposed to the earthquake showed
symptoms of PTSD and enhanced suppression of cortisol,
similar to some findings in adult patients with PTSD.
Taken together, it is evident that neuroendocrine dysfunc-
tion in children with early life stress is highly variable and
likely influenced by multiple factors (i.e., type, age at
onset and duration of the stressful event, the time elapsed
since the event, concomitant stress and psychopathology).
Moreover, a stable phenotype of altered stress vulnerabil-
ity related to early life stress may not yet have evolved in
children.

Similar to findings in animal models of early stress and
adult patients with depression or PTSD, elevated 24-hour
urinary NE, epinephrine (E), and dopamine (DA) excre-
tion as well as decreased platelet adrenergic receptors have
been measured in abused children with PTSD (De Bellis et
al 1999a; Perry 1994). Abused children with PTSD also
exhibit increased heart rate and blood pressure levels at
rest and after orthostatic challenge (Perry 1994). Elevated
catecholamine secretion does not appear to be an exclusive
correlate of psychopathology because elevated levels were
also found in abused girls without PTSD (De Bellis et al
1997) and children whose parents had marital problems
(Gottman and Katz 1989). Notably, decreased levels of
NE and DA-b-hydroxylase (DbH), the rate limiting factor
in the synthesis of NE, were observed in children who
were neglected in infancy (see Rogeness and McClure
1996), indicating that the type and timing of early stress
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may determine the direction of biological changes, which
may be related to differential psychopathology.

Indicative of serotonergic dysfunction, abused children
with depression were shown to exhibit increased prolactin
but normal cortisol responses to the injection ofL-5-
hydroxytryptophan, a precursor of 5-HT, compared with
nonabused depressed children and control subjects (Kauf-
man et al 1998). Likewise, increased prolactin responses
to fenfluramine were observed in boys with adverse
rearing environment (Pine et al 1997). Since prolactin but
not cortisol release is mediated via 5-HT1A receptors,
these findings suggest sensitization of these receptors due
to early life stress. Another study recently reported that
children with traumatic brain injury (TBI) who had expe-
rienced abuse have dramatic increases in CSF concentra-
tions of glutamate compared with nonabused TBI children
(Ruppel et al 2001). Consistent with a role of glutamate in
the phenomenon of excitotoxicity during neural injury,
increased glutamate concentrations were related to poor
outcome in these children.

In contrast to findings in adult depression and PTSD,
normal hippocampal volumes were observed in maltreated
children with PTSD (De Bellis et al 1999b; also see
below); however, similar to findings in prepubescent
primates exposed to early stress (Sanchez et al 1998),
these children exhibited decreased volumes of the corpus
callosum. Furthermore, a proton magnetic resonance spec-
troscopy study found smaller ratios ofN-acetylasparate to
creatine in the anterior cingulate of abused children with
PTSD compared with control subjects (De Bellis et al
2000), which is thought to reflect decreased neural integ-
rity in this brain region.

Studies in Adults

A limited number of retrospective studies have evaluated
the long-term consequences of early life stress in adults.
Lemieux and Coe (1995) observed increased 24-hour
urinary cortisol excretion in women with a history of
childhood sexual abuse and PTSD, concordant to findings
in abused children with PTSD. These findings are opposite
to findings in Vietnam veterans and Holocaust survivors
with PTSD (Yehuda 2000). Increased plasma cortisol
concentrations were also measured in adults who experi-
enced the death of a parent in childhood and had obtained
a lifetime psychiatric diagnosis (Breier et al 1988). Corti-
sol suppression after dexamethasone was normal in these
subjects. In another study, women with a history of
childhood sexual abuse were found to show hypersup-
pression of salivary cortisol concentrations in response
to a low dose of dexamethasone (Stein et al 1997a).
Basal morning cortisol concentrations and GR binding

were unaltered in these women; however, there was a
trend for higher GR binding in abused women with
PTSD or dissociation. We found decreased basal plasma
cortisol concentrations in the morning in abused women
(Heim et al, 2001). The variance in these data may in
part reflect methodologic differences. It may be that
increased 24-hour urinary cortisol excretion in part
reflects enhanced fluctuation of cortisol release in
response to stress throughout the day in abused women
with PTSD.

Given the clear preclinical evidence for long-term
sensitization of the stress response after early life stress, it
is important to evaluate neuroendocrine stress responsive-
ness in adult humans exposed to early life stress. We found
that abused women with or without current depression
exhibit markedly increased plasma ACTH responses to
psychosocial laboratory stress compared with control sub-
jects and depressed women without early life stress (Heim
et al 2000). Abused women with depression also exhibited
increased cortisol responses to stress compared with all
other groups. Similarly, an increase of cortisol during a
speech in front of a video camera was noted in adults with
parental loss experience, whereas cortisol levels decreased
in control subjects (Luecken 1998). These findings are
remarkably consistent with findings from animal studies
suggesting sensitization of the neuroendocrine stress re-
sponses after early life stress in humans, which may in turn
be related to an increased risk for psychopathology.
Similar to findings in depressed children, our findings
suggest that there are subgroups of depression with differ-
ential pathophysiology depending on early trauma, ex-
plaining the inconsistency of findings in the literature, for
example, Young et al (2000).

To further explore the mechanism(s) of pituitary-adre-
nal dysfunction in these women, we used a standard CRF
stimulation test, which selectively stimulates pituitary
CRF receptors without involving higher levels of HPA
axis control (Heim et al 2001). Abused women without
depression, similar to their responses in the social stress
test, exhibited increased ACTH, but normal cortisol re-
sponses to oCRF. In contrast and opposed to their re-
sponses in the social stress test, abused women with
depression exhibited a blunted ACTH response to exoge-
nous CRF. This finding compares with classical findings
in depression and was also observed in depressed women
without abuse. Abused women with depression women
also reported elevated levels of recent life stress. One may
thus assume that early life stress is related to sensitization
of the CRF neuronal circuits, resulting in high CRF
secretion whenever these women are stressed. At the
pituitary, this eventually leads to CRF receptor down-
regulation, and, because of CRF actions at extrahypo-
thalamic sites, to signs and symptoms of depression and
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anxiety. The discrepancy between the responses in the
stress test compared with the CRF stimulation test in
abused women with depression remains unexplained but
may involve activation of corticolimbic pathways. We
further reported that abused women without depression
release less cortisol during a standard ACTH1–24 stimula-
tion test (250mg) (Heim et al 2001), suggesting peripheral
adaptation to CNS hyperactivity, which parallels findings
in animal models of early life stress and abused children
with depression.

Parallel to findings in abused children with PTSD,
elevated 24-hour urinary NE excretion was reported in
abused women with PTSD (Lemieux and Coe 1995). In
addition, increased heart rate or blood pressure responses
have been observed during stress induction in adults with
early parental loss and abused women with depression
(Heim et al 2000; Luecken 1998) as well during mental
imagery of abuse experiences in abused women with
PTSD (Orr et al 1998), suggesting increased autonomic
reactivity. With respect to serotonergic function, a history
of severe childhood abuse was found to be highly corre-
lated with blunted prolactin responses to m-CPP in adult
women who suffered from borderline personality disorder
(Rinne et al 2000). Because this finding is opposite to
findings in maltreated children but comparable with find-
ings in VFD-reared adult nonhuman primates, these au-
thors suggested that the 5-HT system may undergo a
developmental “switch” after early stress.

Similar to findings in adult depression or combat-
related PTSD, decreased hippocampal volumes have been
measured in adults with perinatal trauma and adult women
with child abuse and PTSD (Bremner et al 1997; McNeil
et al 2000; Stein et al 1997b). Because hippocampal
atrophy is not observed in abused children with PTSD (De
Bellis et al 1999b), it may be hypothesized that repeatedly
increased cortisol secretion over the course of time in-
duces hippocampal cell loss and impaired neurogenesis in
the dentate gyrus, which may further disinhibit cortisol
secretion, eventually resulting in measurably smaller hip-
pocampi. Two positron emission tomography studies re-
ported decreased activation of the anterior cingulate
during script-driven guided mental imagery of personal
abuse experiences in abused women with PTSD relative
to abused women without PTSD (see Newport and
Nemeroff 2000), a structure that is also abnormally
developed in maltreated children with PTSD. These
studies also found altered activation of several areas of
the frontal cortex, which are involved in the processing
of emotion; however, because of the immanent difficul-
ties in including nonabused control subjects when
reading trauma scripts, it cannot be decided whether
early life stress per se is associated with these neurobi-
ological changes.

Are the Neurobiological Consequences of
Early Life Stress Reversible?

As we have shown, accumulating evidence from preclin-
ical and clinical studies suggests that early life stress
induces persistent sensitization of CRF neurocircuits, re-
sulting in a phenotype with increased vulnerability to
stress, depression, and anxiety. Pharmacologic agents that
target central CRF systems may reverse the neurobiolog-
ical consequences of early life stress and may therefore be
useful in the prevention and treatment of disorders related
to early life stress in children and adults.

A number of studies provide evidence that different
classes of antidepressants decrease CRF neuronal or HPA
axis activity in rodents and primates, including humans
(Bánki et al 1992; Brady et al 1991, 1992; De Bellis et al
1993; Michelson et al 1997; Veith et al 1993). It would
appear that a decrease in the activity of one or more CRF
neural systems is one shared mechanism of action of
several classes of antidepressant drugs and may be rele-
vant to their therapeutic efficacy. Many of the above
effects were produced by drugs that affect the central
serotonergic neurons, including the selective 5-HT re-
uptake inhibitors (SSRI). The SSRIs have been shown to
be effective in the treatment of several psychiatric disor-
ders that have been associated with early life stress (e.g.,
depression and PTSD; Hidalgo and Davidson 2000).
Notably, in a randomized placebo-controlled trial, survi-
vors of childhood abuse with PTSD were more responsive
to fluoxetine than combat veterans with PTSD (van der
Kolk et al 1994). Furthermore, SSRIs, including fluoxetine
and paroxetine, show significant efficacy versus placebo
in the treatment of early-onset depression in children and
adolescents, whereas it appears to be resistant to tricyclic
antidepressants (Martin et al 2000). Other SSRIs, such as
sertraline or fluvoxamine, showed efficacy in open clinical
trials in early-onset depression (Martin et al 2000). Inter-
esting in this regard are findings showing that treatment of
maternally deprived rats as adults with the selective 5-HT
reuptake inhibitor paroxetine reverses the neurobiological
consequences of early life stress, resulting in unaltered
vulnerability to stress, depression, and anxiety (Plotsky et
al in press). Tricyclic antidepressants have also been found
to reverse increased HPA axis reactivity to stress in adult
primates exposed to maternal deprivation (Suomi 1991). It
appears that several available drugs, but namely the
SSRIs, may be beneficial in the treatment of children and
adults exposed to early life stress. Future preclinical
studies will have to evaluate the efficacy of these drugs in
the prevention or reversal of the effects of early life stress
during development. Furthermore, the efficacy of other
classes of available drugs known to decrease CRF activity,
including the 5-HT/NE reuptake inhibitor venlafaxine and
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benzodiazepines (Owens et al 1996; Skelton et al 2000), in
the prevention or reversal of the effects of early life stress
should be studied. Clinical trials evaluating the efficacy of
these available drugs in reversing neurobiological and
psychological maladaptation in children and adults with
histories of early life stress are urgently needed.

There are also promising novel drugs that may be
efficient in the treatment of disorders related to early life
stress. Thus, considerable attention has been directed
toward the development and evaluation of CRF receptor
antagonists. Given the integral role of CRF and its
receptors in the mediation of stress and emotion, the CRF1

receptor antagonists are being discussed as novel antide-
pressants and anxiolytics as well as potentially preventive
treatments for PTSD (Martin et al 2000). Oral administra-
tion of the CRF1 receptor antagonist antalarmin signifi-
cantly decreased CSF CRF, pituitary-adrenal and auto-
nomic responses to stress and inhibited behaviors
indicative of fear and anxiety in adult primates (Habib et
al 2000). The antidepressant and anxiolytic properties of
the selective CRF1 receptor antagonist R121919 was
recently demonstrated in a clinical trial of depressed
patients (Zobel et al 2000). Interestingly, treatment of rats
exposed to prenatal stress with CRF antagonists reverses
the characteristic increases of fearful behavior observed in
these animals (Ward et al 2000). In 9- to 11-day-old rat
pups, the CRF1 receptor antagonist CP 154,526 diminishes
vocalizations indicative of anxiety in response to separa-
tion from their litters (Kehne et al 2000). Given the fact
that early life stress is related to substantial alterations in
central CRF systems, it is plausible that CRF1 receptor
antagonists, once they are available, will represent the
most direct treatment of symptoms related to early life
stress in children and adults.

Finally, the intriguing evidence that the neurobiological
effects of handling and maternal separation may be re-
versed by cross-fostering of the pups gives rise to the
hypothesis that improvement of parental or foster care
may help prevent or reverse the neurobiological and
psychopathologic consequences of early life stress in
humans. Thus, a recent study found that maltreated pre-
school children who were placed in an Early Intervention
Foster Care program, which uses the foster-care setting for
therapeutic intervention promoting positive parenting
strategies, showed improved behavioral adjustment and
overall decreases in salivary cortisol levels compared with
children in normal foster care (Fisher et al 2000).

Conclusion

An unacceptably large number of children in our society
are subjected to early adverse experiences, exposing these
children to an increased risk for the development of

depression or anxiety disorders, as well as other disorders,
that may persist throughout adulthood. We have sum-
marized findings from preclinical and clinical studies
suggesting that early life stress induces long-lived hyper-
activity and sensitization of CNS CRF and other neuro-
transmitter systems, resulting in enhanced endocrine, au-
tonomic, and behavioral stress responsiveness. With
repeated exposure to life stress, this vulnerability may
result in symptoms of depression and anxiety disorders, as
well as in other physiologic abnormalities frequently
observed in adult survivors of abuse. Researchers have
now begun to identify factors that moderate or reverse the
effects of early life stress on neurobiological systems.

Most preclinical studies have examined the long-term
impact of early life stress on brain development in adult
animals, whereas a limited number of studies have evalu-
ated the impact of early experiences in developing ani-
mals; however, neurobiological findings in children with
early life stress differ in several aspects from findings in
adults. There are also differences in the neurobiology of
early-onset and adulthood depression, and early life stress
appears to be a crucial factor in explaining these differ-
ences. Thus, preclinical studies focusing on developmental
aspects of the effects of early life stress are urgently needed.
These studies may help to understand time patterns in the
development of neurobiological changes in relation to early
life stress, to identify critical developmental periods sensitive
to the effects of stress or intervention, and to help elucidate
the mechanisms of early-onset depression.

It should be noted, however, that it is generally difficult
to infer from animal studies on the effects of early life
stress on human development. First, the length of periods
of plasticity in various brain regions differs between rats
and humans. Second, there are immanent difficulties in
modeling typical stressful experiences of human infants or
children in animal paradigms: maternal separation and
VFD may best parallel instances of neglect of human
children, whereas the human experiences of sexual or
physical abuse include a commission, which may have
differential neurobiological effects (Glaser 2000). More-
over, human early life stress is characterized by great
variety with respect to age at onset, severity, frequency,
and chronicity of the stressor, and additional environmen-
tal variations, such as the general family environment and
the availability of coping resources, which contribute to
the effects of the stress in humans. Fourth, different
research methods to assess neurobiological systems in
animals and humans complicate the direct comparison of
findings.

Therefore, more studies in humans exposed to early life
stress are needed. These studies will have to meet the
challenge to identify differential immediate and long-term
effects of great varieties of early life stress experienced at
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different developmental stages. Although difficult to real-
ize, it will be indispensable to conduct longitudinal clinical
studies, which will enhance our understanding of the critical
developmental phases that are particularly sensitive to the
effects of stress as well as pharmacologic or social
buffering and that will provide unequivocal knowledge on
a causal relationship between early life stress and the
development of pathology in humans. The development of
new techniques allowing for the assessment of central neuro-
transmitter and receptor changes, including CRF receptors,
will considerably advance this clinical research and will
increase the comparability of clinical and preclinical findings.

Future studies should further elucidate the role of
predisposing factors in the manifestation of a vulnerable
phenotype as a consequence of early life stress. For
example, there may be genetic vulnerability to the neuro-
biological effects of early life stress. Thus, twin studies are
needed for the prediction of neurobiological stress respon-
siveness as a function of genes, early life stress, and
ongoing stress, among other factors. Although national
epidemiologic studies suggest a similar incidence of child-
hood abuse in girls and boys, the role of gender in the
development of neurobiological alterations after early life
stress is a neglected area of research. And although the
prevalence of early-onset depression is similar in girls and
boys, adult women more often develop depression than
men (Martin et al 2000). Gender differences in children’s
and adolescents’ adaptation to sexual abuse have been
reported (Feiring et al 1999), as well as differences in HPA
axis reactivity in male and female healthy subjects and
depressed adolescents (Dorn et al 1996; Kirschbaum et al
1999). Thus, future preclinical and clinical studies should
evaluate the interaction between stress and gender in induc-
ing neurobiological vulnerability to depression and anxiety.

Taken together, a pivotal role of early environmental
variation in the development of long-term (mal)adapta-
tions to stress has been documented in an impressive series
of studies. The current database suggests that early adverse
experiences should be addressed in the clinical care of
children, adolescents, and adults with psychiatric disor-
ders, a need that is often unmet in clinical practice.
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